
Documentation for Sphere.h and Sphere.c
Steve Andrews
2005 - 2024

1 Header file: Sphere.h

1 /* Steven Andrews 2/05.

2 See documentation called Sphere_doc.doc.

3 Copyright 2005 -2007 by Steven Andrews. This work is distributed under the terms

4 of the Gnu Lesser General Public License (LGPL). */

5

6

7 #ifndef __Sphere_h

8 #define __Sphere_h

9

10 /*

11 Cart = Cartesian coordinates (x, y, z)

12 Sc = Spherical coordinates (r, theta , phi)

13 Dcm = Direction cosine matrix (A00 , A01 , A02 , A10 , A11 , A12 , A20 , A21 , A22)

14 Eax = Euler angles x-convention (theta , phi , psi)

15 Eay = Euler angles y-convention (theta , phi , chi)

16 Qtn = Quaternions (q0 , q1 , q2 , q3)

17 Ypr = xyz - or ypr - or Tait -Bryan convention (yaw , pitch , roll): rotate on z, then

y, then x

18 */

19

20 void Sph_Cart2Sc(const double *Cart ,double *Sc);

21 void Sph_Sc2Cart(const double *Sc,double *Cart);

22 void Sph_Cart2Cart(const double *Cart1 ,double *Cart2);

23 void Sph_Ypr2Ypr(const double *Ypr1 ,double *Ypr2);

24 void Sph_Eax2Ypr(const double *Eax ,double *Ypr);

25

26 void Sph_Eax2Dcm(const double *Eax ,double *Dcm);

27 void Sph_Eay2Dcm(const double *Eay ,double *Dcm);

28 void Sph_Ypr2Dcm(const double *Ypr ,double *Dcm);

29 void Sph_Ypr2Dcmt(const double *Ypr ,double *Dcmt);

30 void Sph_Dcm2Ypr(const double *Dcm ,double *Ypr);

31 void Sph_Dcm2Dcm(const double *Dcm1 ,double *Dcm2);

32 void Sph_Dcm2Dcmt(const double *Dcm1 ,double *Dcm2);

33

34 void Sph_DcmxDcm(const double *Dcm1 ,const double *Dcm2 ,double *Dcm3);

35 void Sph_DcmxDcmt(const double *Dcm1 ,const double *Dcmt ,double *Dcm3);

36 void Sph_DcmtxDcm(const double *Dcmt ,const double *Dcm2 ,double *Dcm3);

37 void Sph_DcmxCart(const double *Dcm ,const double *Cart ,double *Cart2);

38 void Sph_DcmtxCart(const double *Dcm ,const double *Cart ,double *Cart2);

39

40 void Sph_One2Dcm(double *Dcm);

41 void Sph_Ypr2Yprr(const double *Ypr ,double *Yprr);

42 void Sph_Dcm2Dcmr(const double *Dcm ,double *Dcmr);

43 void Sph_Rot2Dcm(char axis ,double angle ,double *Dcm);

44 void Sph_Newz2Dcm(const double *Newz ,double psi ,double *Dcm);

45

46 void Sph_DcmtxUnit(const double *Dcmt ,char unit ,double *vect ,const double *add ,

double mult);

47

48 void Sph_One2Qtn(double *Qtn);

49 void Sph_Qtn2Qtn(const double *Qtn1 ,double *Qtn2);

1



50 void Sph_Ypr2Qtn(const double *Ypr ,double *Qtn);

51 void Sph_Ypr2Qtni(const double *Ypr ,double *Qtni);

52 void Sph_Qtn2Ypr(const double *Qtn ,double *Ypr);

53 void Sph_Dcm2Qtn(const double *Dcm ,double *Qtn);

54 void Sph_Qtn2Dcm(const double *Qtn ,double *Dcm);

55 void Sph_XZ2Qtni(const double *x,const double *z,double *Qtn);

56 void Sph_QtnxQtn(const double *Qtn1 ,const double *Qtn2 ,double *Qtn3);

57 void Sph_QtnixQtn(const double *Qtn1 ,const double *Qtn2 ,double *Qtn3);

58 void Sph_QtnxQtni(const double *Qtn1 ,const double *Qtn2 ,double *Qtn3);

59 void Sph_QtnRotate(const double *Qtn ,const double *Cart ,double *Cart2);

60 void Sph_QtniRotate(const double *Qtn ,const double *Cart ,double *Cart2);

61 void Sph_QtniRotateUnitx(const double *Qtni ,double *vect ,const double *add ,double

mult);

62 void Sph_QtniRotateUnitz(const double *Qtni ,double *vect ,const double *add ,double

mult);

63

64 double Sph_RotateVectWithNormals3D(const double *pt1 ,const double *pt2 ,double *

newpt2 ,double *oldnorm ,double *newnorm ,int sign);

65 void Sph_RotateVectorAxisAngle(const double *vect ,const double *axis ,double angle ,

double *rotated);

66

67 #endif

2 Description

This is a collection of routines for manipulating rotational coordinates using a variety of conventions.
Note that some coordinates are for vectors (e.g. spherical coordinates) whereas others are for
transformations (e.g. Euler angles). Some of the math here is described in Goldstein (see Appendix
B, pp. 606-610, and section 4.4, pp. 143-148), Wikipedia (“Rotation matrix” and “Euler Angles”)
and Wolfram MathWorld (“Rotation Matrix”). Most rotations are passive, meaning that the
rotation matrix times a vector leads to a rotated coordinate system, while the vector is unchanged.
If you want to leave the coordinate system in place and rotate the vector instead, use the transposed
direction cosine matrix.

If two different function arguments are the same size, such as two vectors or two matrices, then
they are always allowed to point to the same memory. For example to invert the direction cosine
matrix dcm in-place, the function call is Sph Dcm2Dcmt(dcm,dcm). While input angles are never
required to be clamped to fixed domains, the output angle ranges are usually clamped, perhaps
as listed below but usually based on whatever the inverse trig functions return. Input vectors and
direction cosine matrices are assumed to be valid and are not checked.

Cartesian coordinates (Cart)
Vector is [x, y, z], all of which are on (−∞,∞).

Spherical coordinates (Sc)
Vector is [r, θ, φ]. r is on [0,∞), θ is on [0, π], and φ is on (−π, π].

Direction cosine matrix (Dcm)
Matrix is given as a 9 element array, which lists the matrix row by row. This is useful for all
coordinate transformations and is not associated with any particular convention.

Direction cosine matrix transpose (Dcmt)
This is entered as a normal, non-transposed, direction cosine matrix. However, it is interpreted
as a transposed direction cosine matrix in the code.

2



Euler angle x-convention (Eax)
Vector is [θ, φ, ψ]. φ is on [0, 2π), θ is on [0, π], ψ is on [0, 2π). A = Z(ψ)X(θ)Z(φ).

Euler angle y-convention (Eay)
Vector is [θ, φ, χ]. φ is on [0, 2π), θ is on [0, π], χ is on [0, 2π). A = Z(χ)Y (θ)Z(φ).

Quaternions (Qtn)
Vector is [q0, q1, q2, q3].

Yaw-pitch-roll (Xyz or Ypr)
Vector is [φ, θ, ψ]. All are on (−π, π]. These angles are sometimes not clamped because
multiple rotations are possible. A = X(ψ)Y (θ)Z(φ).

3 Dependencies

random2.h

4 History

2/05 Started.

7/05 Documented.

10/24/07 Added Eax2Dcm, Eay2Dcm, Newz2Dcm.

5/55/12 Added Sph DcmtxUnit.

5/28/12 Added Sph Xyz2Dcmt.

8/6/15 Added Sph RotateVectWithNormals.

3/13/24 Added Sph Eax2Xyz.

3/15/24 Added Sph DcmxCart.

3/16/24 Rewrote docs in LaTeX.

10/5/24 Renamed Xyz to Ypr. Added math text. Removed Euler parameters. Added quater-
nions.

5 Math

The following text was copied from SmoldynCodeDoc, and then edited. See also Goldstein Chapter
4 (page 128) and Appendix B (page 608), Andrews, 2004 (rotational averaging paper), and Andrews,
2014 (filament paper).

Yaw-pitch-roll angles are described by the Tait-Bryan convention:

name symbol perpendicular positive positive
axis direction unit vector

yaw φ z turn left ẑ
pitch θ y turn down ŷ
roll ψ x tilt right x̂

3



Note that pitch is defined so that positive pitch is rotation downward. This is the opposite of
many conventions, but is used here so that the rotation vector is along the positive ŷ vector while
using a right-handed coordinate system.

Rotation can be given with a direction cosine matrix (dcm), Φ, which can be expanded as

Φ =

 ΦXx ΦXy ΦXz

ΦY x ΦY y ΦY z

ΦZx ΦZy ΦZz

 (1)

This dcm can convert between two frames of reference for a static object, called passive rotation,
or can rotate an object in a fixed reference frame, called active rotation. Here, X, Y , and Z are
the unit vectors of the “lab frame”, meaning the absolute coordinates of the simulation, and x, y,
and z are the unit vectors of the “molecule frame”. The dcm expresses the dot products of these
unit vectors, so each column gives the lab frame coordinates of each unit vector of the molecule
frame, and each row gives the molecule frame coordinates of each unit vector of the lab frame. It
is unitary, meaning that all its eigenvalues equal 1, and its transpose is its inverse, so ΦTΦ = 1,
where 1 is the identity matrix.

The dcm for a product of yaw, pitch, and roll transformations is (Goldstein pp. 135 and 609)

Φ = X(ψ)Y (θ)Z(φ)

=

 1 0 0
0 cψ sψ
0 −sψ cψ

 cθ 0 −sθ
0 1 0
sθ 0 cθ

 cφ sφ 0
−sφ cφ 0

0 0 1


=

 cθcφ cθsφ −sθ
sψsθcφ− cψsφ sψsθsφ+ cψcφ cθsψ
cψsθcφ+ sψsφ cψsθsφ− sψcφ cθcψ

 (2)

Right-multiplying the direction cosine matrix with a vector that’s expressed in the lab frame
returns the coordinates of the same vector but now using the molecule frame. For example, suppose
rL is a vector expressed in the lab frame. Then,

r = ΦrL (3)

gives the same vector but expressed in the molecule frame. (As a particularly simple vector, suppose
rL = [1, 0, 0]T ; in the molecule frame, which is rotated counter-clockwise by φ from the lab frame,
r = [cφ,−sφ, 0]T .) This expression can be transposed and/or multiplied on both sides by ΦT to
yield

r = ΦrL rL = ΦTr (4)

rT = rTLΦT rTL = rTΦ (5)

This library has functions for these multiplications. The transpose of the dcm listed above performs
an active rotation of a vector in a constant coordinate system.

Quaternions work in relatively similar ways (see the online article “Rotation Quaternions, and
How to Use Them” by Rose, 2015). A quaternion, q has 4 values, (q0, q1, q2, q3). If it represents a
3D point in space, then q = (0, x, y, z) and if it represents a rotation, then all four values can be
non-zero and they have total magnitude of 1. The quaternion q = (1, 0, 0, 0) is the rotation identity
quaternion, which produces no rotation.

4



6 Code documentation

6.1 Typical parameter names

name meaning

cf cos(φ)
cq cos(θ)
cy cos(ψ) or cos(χ)
sf cos(φ)
sq cos(θ)
sy cos(ψ) or sin(χ)

6.2 Internal macros and global variables

#define PI 3.14159265358979323846

π

double Work[9],Work2[9];

Scratch space.

6.3 Externally accessible functions

Vector conversion functions

void Sph Cart2Sc(double *Cart,double *Sc);

Converts Cartesian coordinates to spherical coordinates.

void Sph Sc2Cart(double *Sc,double *Cart);

Converts spherical coordinates to Cartesian coordinates.

void Sph Cart2Cart(const double *Cart1,double *Cart2);

Copies the 3D vector Cart1 to the 3D vector Cart2.

void Sph Ypr2Ypr(double *Ypr1,double *Ypr2);

Copies yaw-pitch-roll vector (or any other 3D vector) Ypr1 to Ypr2. This does not clamp
angles.

void Sph Eax2Ypr(double *Eax,double *Ypr);

Converts Euler angle x-convention to yaw-pitch-roll vector. Equations are from Sphere.nb.

void Sph Eax2Dcm(double *Eax,double *Dcm);

Calculates direction cosine matrix from Euler angle x-convention vector. Equations from
Wolfram Mathworld and Sphere.nb.

void Sph Eay2Dcm(double *Eay,double *Dcm);

Calculates direction cosine matrix from Euler angle y-convention vector. Equations from
Wolfram Mathworld and Sphere.nb.

void Sph Ypr2Dcm(double *Ypr,double *Dcm);

Calculates direction cosine matrix from yaw-pitch-roll vector. Equations from Goldstein p.
609 and Sphere.nb. A = X(ψ)Y (θ)Z(φ).

5



void Sph Ypr2Dcmt(double *Ypr,double *Dcmt);

Calculates transposed direction cosine matrix from yaw-pitch-roll vector. This is just Sph Ypr2Dcm,
but for a transposed result. Rather than using this function, it’s usually best to use the un-
transposed version in a ...Dcmt... function.

void Sph Dcm2Ypr(double *Dcm,double *Ypr);

Calculates yaw-pitch-roll vector from a direction cosine matrix. Equations derived from Gold-
stein p. 609 and from Sphere.nb.

void Sph Dcm2Dcm(double *Dcm1,double *Dcm2);

Copies direction cosine matrix (or any other 9 element vector) Dcm1 to a new one in Dcm2.

void Sph Dcm2Dcmt(double *Dcm1,double *Dcm2);

Transposes direction cosine matrix Dcm1 to yield matrix inverse in Dcm2. A2 = A−1
1 .

void Sph DcmxDcm(double *Dcm1,double *Dcm2,double *Dcm3);

Matrix multiplies Dcm1 by Dcm2 and returns result in Dcm3. Note that the transformation is
Dcm2 first, then Dcm1. A3 = A1A2.

void Sph DcmxDcmt(double *Dcm1,double *Dcmt,double *Dcm3);

Matrix multiplies Dcm1 by the transpose of Dcmt and returns result in Dcm3 (Dcmt is entered
as an untransposed matrix). Essentially, this is a negative rotation of Dcmt followed by a
positive rotation of Dcm1. A3 = A1A

−1
2 .

void Sph DcmtxDcm(double *Dcmt,double *Dcm2,double *Dcm3);

Matrix multiplies the transpose of Dcmt by Dcm2 and returns the result in Dcm3 (Dcmt is
entered as an untransposed matrix). Essentially, this is a positive rotation of Dcm2 followed
by a negative rotation of Dcmt. A3 = A−1

1 A2.

void Sph DcmxCart(const double *Dcm,const double *Cart,double *Cart2);

Multiplies matrix Dcm by Cartesian vector Cart and returns the result in Cart2. This is a
passive rotation of the coordinate system for the vector, x2 = A · x. This is just a matrix
times a vector, but is specifically for 3D.

void Sph One2Dcm(double *Dcm);

Returns the identity direction cosine matrix. Aij = δij .

void Sph Ypr2Yprr(double *Ypr,double *Yprr);

Converts the forward-direction yaw-pitch-roll vector Ypr to a relative direction change, but
for travel in the reverse direction. For example, suppose an airplane performs the direction
change that corresponds to Ypr. If it then turns around, with the local z-vector as it was
initially, but with both x- and y-vectors reversed (180◦yaw), then it needs to execute rotation
Yprr to retrace its original track. A = Z−1(φ)Y (θ)X(ψ). Note that this reverses a relative
direction change between two vectors and does not reverse an absolute vector (the airplane
traveling west being converted to it traveling east). Equations from Sphere.nb.

void Sph Dcm2Dcmr(double *Dcm,double *Dcmr);

Converts an absolute dcm to a dcm in the reverse direction. This reverses the local x and y
directions, while preserving the local z direction. This is unlike Sph Ypr2Yprr in that this is
for absolute directions while that one was for relative directions. Ar = Z(π)A.

6



void Sph Rot2Dcm(char axis,double angle,double *Dcm);

Returns the direction cosine matrix that corresponds to rotation by angle angle about axis
axis, where this latter parameter is the character x, y, or z (or upper-case). A = X(a) or
A = Y (a) or A = Z(a).

void Sph Newz2Dcm(double *Newz,double psi,double *Dcm);

Returns the direction cosine matrix that can be used to rotate the coordinate system such
that the original z-axis will line up with the vector Newz. The length of Newz is irrelevent;
it does not need to be normalized. Additional rotation about the new z-axis is entered with
psi. This works as follows: Newz is converted to spherical coordinates θ and φ, then the dcm
is A = Z(ψ − φ)X(θ)Z(φ), which is transposed to yield the active matrix.

void Sph DcmtxUnit(double *Dcmt,char axis,double *vect,double *add,double mult);

Multiplies the transpose of Dcmt (entered as a non-transposed direction cosine matrix) with
the unit vector for axis axis (entered as x, y, or z, or upper case) and returns the result in the
3-dimensional vector vect. This multiplies the result by the scalar mult. If add is non-NULL,
this adds add to vect before returning the result.

Quaternions

void Sph One2Qtn(double *Qtn)

Returns the rotation identity quaternion, which is q = (1, 0, 0, 0).

void Sph Qtn2Qtn(const double *Qtn1,double *Qtn2)

Copies quaternion Qtn1 to Qtn2.

void Sph Ypr2Qtn(const double Ypr,double *Qtn)

Converts Ypr angles to quaternion Qtn. This uses the following equation, which is from Rose
2015 but with sign changes because theirs is for active rotation and this is for passive rotation.

q =


cψ2 c θ2cφ2 + sψ2 s θ2sφ2
−sψ2 c θ2cφ2 + cψ2 s θ2sφ2
−cψ2 s θ2cφ2 − sψ2 c θ2sφ2
−cψ2 c θ2sφ2 + sψ2 s θ2cφ2


void Sph Ypr2Qtni(const double Ypr,double *Qtni)

Converts Ypr angles to the inverse quaternion Qtn, but returned as a normal quaternion.
This uses the following equation, from Rose, 2015. The signs are the same as in Rose because
this is for an inverse passive rotation and theirs is for a forward active rotation.

q =


cψ2 c θ2cφ2 + sψ2 s θ2sφ2
sψ2 c θ2cφ2 − cψ2 s θ2sφ2
cψ2 s θ2cφ2 + sψ2 c θ2sφ2
cψ2 c θ2sφ2 − sψ2 s θ2cφ2


void Sph Qtn2Ypr(const double *Qtn,double *Ypr)

Converts quaternion Qtn to ypr angles in Ypr. This uses the following equation, which is from
Rose, 2015.

ypr =

 atan2(2q0q3 + 2q1q2, q
2
0 + q21 − q22 − q23)

asin(2q0q2 − 2q1q3)
atan2(2q0q1 + 2q2q3, q

2
0 − q21 − q22 + q23)


7



void Sph Dcm2Qtn(const double *Dcm,double *Qtn)

Converts direction cosine matrix Dcm to quaternion Qtn. This is based on equations from
Rose, 2015, but modified. Those equations are slightly slower to compute and also unstable
to roundoff error (one can end up taking the square root of a negative number). My equations
are as follows. First, compute

q0 = r11 + r22 + r33

q1 = r11 − r22 − r33
q2 = −r11 + r22 − r33
q3 = −r11 − r22 + r33

Next, determine which of these q values is largest and recompute each one according the
following equations:

q0 largest q1 largest q2 largest q3 largest

q0 = 0.5
√

1 + q0 q1 = 0.5
√

1 + q1 q2 = 0.5
√

1 + q2 q3 = 0.5
√

1 + q3
f = 0.25/q0 f = 0.25/q1 f = 0.25/q2 f = 0.25/q3
q1 = f(r32 − r23) q0 = f(r32 − r23) q0 = f(r13 − r31) q0 = f(r21 − r12)
q2 = f(r13 − r31) q2 = f(r12 + r21) q1 = f(r12 + r21) q1 = f(r13 + r31)
q3 = f(r21 − r12) q3 = f(r13 + r31) q3 = f(r23 + r32) q2 = f(r23 + r32)

void Sph Qtn2Dcm(const double *Qtn,double *Dcm)

Converts quaternion Qtn to direction cosine matrix Dcm. This uses the equation, from Rose,
2015,

Q =

 1− 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 1− 2q21 − 2q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2q21 − 2q22


void Sph QtnxQtn(const double Qtn1,const double Qtn2,double *Qtn3)

Multiplies quaternion Qtn1 by Qtn2 to yield Qtn3. Equation is from Rose, 2015. For the
product t = rs,

t =


r0s0 − r1s1 − r2s2 − r3s3
r0s1 + r1s0 − r2s3 + r3s2
r0s2 + r1s3 + r2s0 − r3s1
r0s3 − r1s2 + r2s1 + r3s0


void Sph QtnixQtn(const double Qtn1,const double Qtn2,double *Qtn3)

Multiplies the inverse of quaternion Qtn1 (entered in its non-inverse version) by Qtn2 to yield
Qtn3. For the product t = r−1s,

t =


r0s0 + r1s1 + r2s2 + r3s3
r0s1 − r1s0 + r2s3 − r3s2
r0s2 − r1s3 − r2s0 + r3s1
r0s3 + r1s2 − r2s1 − r3s0


void Sph QtnxQtni(const double Qtn1,const double Qtn2,double *Qtn3)

Multiplies quaternion Qtn1 by the inverse of Qtn2 (entered in its non-inverse version) to yield
Qtn3. For the product t = r−1s,

t =


r0s0 + r1s1 + r2s2 + r3s3
−r0s1 + r1s0 + r2s3 − r3s2
−r0s2 − r1s3 + r2s0 + r3s1
−r0s3 + r1s2 − r2s1 + r3s0


8



void Sph QtnRotate(const double *Qtn,const double *Cart,double *Cart2);

Rotates 3D Cartesian vector Cart using quaternion Qtn, returning the answer in 3D vector
Cart2. This computes the product

c2 = q∗cq

where c2 is Cart2, q is Qtn, and c is Cart. The math is derived in the Mathematica document
SphereQuat.nb. This equation performs passive rotation from the c frame to the c2 frame,
where the rotation angles represent the rotation of c2 from c (e.g. c is the lab frame and c2
is the molecule frame).

void Sph QtniRotate(const double *Qtn,const double *Cart,double *Cart2);

Performs the inverse rotation of 3D Cartesian vector Cart using quaternion Qtn, returning
the answer in 3D vector Cart2. This computes the product

c2 = qcq∗

where c2 is Cart2, q is Qtn, and c is Cart. The math is derived in the Mathematica document
SphereQuat.nb. See the discussion for Sph QtnRotate.

void Sph QtniRotateUnitx(const double *Qtni, double *vect, const double *add, double

mult)

Rotates the x̂ unit vector with the inverse quaternion Qtni, which is entered as a non-inverted
quaternion, and then multiplies the result by mult and adds it to add, returning the answer
in vect. The add vector is required and cannot be the same as vect. Using a for add, m for
mult, v for vect, and q for Qtni, the equation for this is

v = a +m

 q20 + q21 − q22 − q23
2q1q2 − 2q0q3
2q0q2 + 2q1q3


This is derived in the Mathematica document SphereQuat.nb.

void Sph QtniRotateUnitz(const double *Qtni, double *vect, const double *add, double

mult)

Rotates the ẑ unit vector with the inverse quaternion Qtni, which is entered as a non-inverted
quaternion, and then multiplies the result by mult and adds it to add, returning the answer
in vect. The add vector is required and cannot be the same as vect. Using a for add, m for
mult, v for vect, and q for Qtni, the equation for this is

v = a +m

 −2q0q2 + 2q1q3
2q0q1 + 2q2q3

q20 − q21 − q22 + q23


This is derived in the Mathematica document SphereQuat.nb.

More rotations

void Sph RotateAxisAngle(const double *pt1,const double *pt2,double theta,const double

*oldvect,double *newvect)

Text.

9



double Sph RotateVectWithNormals3D(double *pt1, double *pt2, double *newpt2, double

*oldnorm, double *newnorm, int sign);

This is for the case where the line from pt1 to pt2 is in the plane that has normal oldnorm,
and then the plane is rotated about point pt1 to so that its normal becomes newnorm. This
function calculates the new value for pt2, returned in newpt2. newpt2 and pt2 are allowed
to point to the same memory. Both oldnorm and newnorm need to have unit length. This
returns the cosine of the angle between the two normals, which is also the dot product of the
two normal vectors. If this cosine is 1, then the two normals are parallel to each other and
newpt2 is set equal to pt2 because no rotation takes place. If this cosine is -1, then the two
normals are anti-parallel to each other, in which case the problem is ill-determined because
the rotation axis cannot be determined; if that’s the case, then this function assumes that
the rotation axis is perpendicular to the vector from pt1 to pt2, with the result that the new
vector is in the opposite direction as the original vector. New function Sept. 2015.

The sign input is here to allow the normals to internally inconsistent. That is, it is good
practice for all normals to points toward the same face of a surface, such as the outside or
inside. If this is the case, then enter sign as 0. However, if this is not done, then enter sign
as 1 if the total rotation should be less than 90◦and as -1 if the total rotation should be more
than 90◦.

It is permitted to enter oldnorm as NULL. In this case, the vector is rotated around a random
rotation axis that is perpendicular to newnorm. In other words, newpt2 is still placed in the
new plane and it is still the correct distance from pt1, but the rotation direction to this new
position is random.

The math is as follows. Define p1 as pt1, p2 as pt2, o as oldnorm, and n as newnorm. Also,
define p as the vector from p1 to p2, meaning that p = p2 − p1. Also define a as the unit
vector for the axis about which the rotation takes place; it is the line that is shared by the
old plane and the new plane. Define θ as the rotation angle about this axis. These values are

a =
o× n√

(o× n) · (o× n)

cos θ = o · n

The θ equation relies on the requirement that o and n have unit length. The direction cosine
matrix for rotation by angle θ about axis a is (from Wikipedia “Rotation matrix”) cθ + a2x(1− cθ) axay(1− cθ)− azsθ axaz(1− cθ) + aysθ

ayax(1− cθ) + azsθ cθ + a2y(1− cθ) ayzz(1− cθ)− axsθ
azax(1− cθ)− aysθ azay(1− cθ) + axsθ cθ + a2z(1− cθ)


void Sph RotateVectorAxisAngle(const double *vect, const double *axis, double angle,

double *rotated)

Rotates vector vect about axis axis by angle angle, returning the answer in rotated. This
uses Rodrigues’s rotation formula. I didn’t write this function, but told ChatGPT to write
it for me, and then I edited the result.

10


